Numerical data analysis

Dr. Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia. wnarifin@usm.my / wnarifin.github.io

Outlines

- Hypothesis Testing
- Parametric Test
- Two Independent Samples
- Two Related Samples
- More Than Two Independent Samples

Learning outcomes

- Understand basic concept of hypothesis testing.
- Understand concept of P-value and significance level.
- Able to perform selected parametric tests for comparison of means between samples.

• In the context of <u>comparison of samples</u> \rightarrow <u>comparison of populations</u>.

• Stated in form of **Statistical Hypothesis** → Can be tested with statistical test.

<u>Alternative Hypothesis</u>: Population A is different from Population B

<u>Null Hypothesis</u>: Population A is similar to Population B

- **P-value** Probability that the difference is merely by chance → Calculated from statistical test.
- Set acceptable level so called "chance" \rightarrow **Significance level**, α (<u>0.05</u>, 0.01, 0.001)

Alternative Hypothesis: P-value ≤ 0.05

<u>Null Hypothesis</u>: P-value > **0.05**

<u>Alternative Hypothesis</u>: Population A is different from Population B

<u>Null Hypothesis</u>: Population A is similar to Population B Statistical Test

<u>Alternative Hypothesis</u>: P-value \leq **0.05**

> <u>Null Hypothesis</u>: P-value > **0.05**

Comparing **mean SBP** of **postgraduate students' population** vs **lecturers' population**

- Statistical test that requires:
 - Sample data come from population data that can be modeled by specific statistical distribution.
 - e.g. SBP of sample ← Normally distributed SBP of population.
 - Fixed set of parameters for chosen distribution.
 - e.g. normal distribution \leftarrow mean, SD.

- Statistical test that requires (cont.):
 - Specific parameters to be tested.
 - e.g. MEAN is different or not.
 - Several assumptions to be tested before performing analysis.
 - Less flexible, BUT powerful and commonly used.

- Parametric tests for comparison of means:
 - Two independent samples: Independent t-test.
 - Two related samples: Paired t-test.
 - More than two independent samples: ANOVA.

- Purpose: Compare MEANS of TWO independent samples/groups.
- Assumptions:

1.Numerical outcome.

2.Normal data distribution for each group.

3. Equal variance between groups.

Research objective:

To compare mean cholesterol level between male and female.

Research question:

Is there any difference in mean cholesterol level between male and female populations?

RQ: Is there any difference in mean cholesterol level between male and female populations?

Independent t-test: Practical

- Dataset: cholestrol2.sav
- Sample size: 40/group
- Group: 2 (male and female)
- Outcome: cholesterol level in mmol/L

Normality: Histogram

ta Histogram		×
	Variable: Cholesterol in mmol/L [cholestr] Display normal curve Panel by Rows: Company gender [gender]	<u>T</u> itles
	Ne <u>s</u> t variables (no empty rows) Columns:	
Template Use chart specificatio	ns from:	
ОК	Paste Reset Cancel Help	

- 1. Graphs > Legacy Dialogs > Histogram
- 2. Variable: *cholestrol*, Display normal curve: [x], Rows: *gender*

3. OK

Normality: Boxplot

tail Define Simple Boxplot: Summaries for Groups of Cases	×
Variable: Category Axis: Gategory Axis: Gategory Axis: Gategory Axis: Image: Category A	Options

- 1. Graphs > Legacy Dialogs > Boxplot > Simple > Define
- 2. Variable: *cholestrol*, Category Axis: *gender*

3. OK

Independent t-test: Steps

🍓 Independent-Samples T T	est	×
	Test Variable(s):	<u>O</u> ptions <u>B</u> ootstrap
	Grouping Variable: gender(? ?) Define Groups	

ta Define Grou	ips X
Our Se specification (Inclusion)	ied values
Group <u>1</u> :	1
Group <u>2</u> :	2
© <u>C</u> ut point:	
Continue	Cancel Help

- 1. Analyze > Compare Means > Independent-Samples T Test...
- 2. Test Variable(s): *cholestrol*, Grouping Variable: *gender*
- 3. [Define Groups] > Group 1: 1, Group 2: 2 > Continue
- 4. OK

Independent t-test: Results

Group Statistics

	gender	Ν	Mean	Std. Deviation	Std. Error Mean
cholesterol in mmol/L	male	40	7.693	.6439	.1018
	female	40	8.768	.6462	.1022

Two related samples: Paired t-test

Two related samples: Paired t-test

- Purpose: Compare MEAN DIFFERENCE between TWO related samples, i.e. equal to ZERO if there is no difference.
- Assumptions:

1.Numerical outcome.

2.Normal distribution of the DIFFERENCES between TWO paired observations (e.g. SBP after treatment – SBP before treatment).

Two related samples: Paired t-test

Research objective:

To compare mean cholesterol level of hypertensive patients before and after treatment.

Research question:

Is there any difference in mean cholesterol level of hypertensive patients before and after treatment?

Two related samples: Paired t-test

RQ: Is there any difference in mean mean cholesterol level of hypertensive patients before and after treatment?

Paired t-test: Practical

- Dataset: cholestrol_prepost.sav
- Sample size: 30 paired observations
- Repetition: 2 (before and after treatment)
- Outcome: cholesterol level in mmol/L

Compute difference

Cholesterol in mmol + < > 7 8 9 - <= >= 4 5 6 * = ~= 1 2 3 / & 1 0 . Eunction group: All Ail Arithmetic CDF & Noncentral CDF Conversion Current Date/Time Date Arithmetic Date Creation ** ~ () Delete Functions and Special Variables: * (ontional case selection condition)	Compute Variable Iarget Variable: difference Type & Label Cholesterol in mmol	=	Num <u>e</u> ric Expression: cholestrol_after - cholestrol_before	×
(optional case selection condition)	Cholesterol in mmol		+ > 7 8 9 - <=	les:
	(optional case selecti	ion condit	ition)	

- 1. Transform > Compute Variable...
- 2. Target Variable: *difference*, Numeric Expression: *cholestrol_after cholestrol_before*

3. OK

Normality: Histogram

🍓 Histogram		×
cholesterol in mmol	Variable: Variable: Variable: Variables Display normal curve Rows: Rows: Nest variables (no empty rows) Columns: Nest variables (no empty columns)	<u>T</u> itles
Template Use chart specification Eile	ns from:	
ОК	Paste Reset Cancel Help	

- 1. Graphs > Legacy Dialogs > Histogram
- 2. Variable: *difference*, Display normal curve: [x]

3. OK

Normality: Boxplot

ta Define Simple Boxplot: S	ummaries of Separate Variables	×
cholesterol in mmol	Boxes Represent: ✓ difference ✓ Label Cases by : ✓ Panel by Panel by Rows: ✓ Image: Nest variables (no empty rows) Columns: ✓ Image: Nest variables (no empty columns)	Options
ОК	Easte Reset Cancel Help	

- 1. Graphs > Legacy Dialogs > Boxplot > Simple, Data in Chart Are: Summaries of separate variables [x] > Define
- 2. Boxes Represent: difference
- 3. OK

Paired t-test: Steps

🍓 Paired-Samples T Test				×
 cholesterol in mmol cholesterol in mmol difference 	Paired Pair 1 2	Variables: Variable1	Variable2 Choleste	Options Bootstrap) →

- 1. Analyze > Compare Means > Paired-Samples T Test...
- 2. Select both *cholestrol_before, cholestrol_after* → Paired Variables
- 3. OK

Paired t-test: Results

Paired Samples Statistics

		Mean	N	Std. Deviation	Std. Error Mean
Pair 1	cholesterol in mmol/L before treatment	8.247	30	.3277	.0598
	cholesterol in mmol/L post treatment	7.440	30	.6806	.1243

Paired Samples Correlations

		Ν	Correlation	Sig.
Pair 1	cholesterol in mmol/L before treatment & cholesterol in mmol/L post treatment	30	.485	.007

Paired Samples Test

Paired Differences									
	95% Confidence Interval of the Difference								
		Mean	Std. Deviation	Mean	Lower	Upper	t	df	Sig. (2-tailed)
Pair 1	cholesterol in mmol/L before treatment - cholesterol in mmol/L post treatment	.8067	.5953	.1087	.5844	1.0290	7.421	29	.000

- <u>AN</u>alysis <u>Of VA</u>riance.
- Purpose: Compare MEANS of THREE/MORE independent samples/groups.
- Assumptions:
 - 1.Numerical outcome.
 - 2.Normal data distribution for each group.

3.Equal variance between groups.

Research objective:

To compare mean cholesterol level between Group A, B and C treatment groups.

Research question:

Is there any difference in mean cholesterol level between Group A, B and C treatment groups?

RQ: Is there any difference in mean cholesterol level between Group A, B and C treatment groups?

<u>Alternative Hypothesis</u>: Mean cholesterol level between any of the populations are different.

<u>Null Hypothesis</u>: No difference in mean cholesterol level between any of the populations Statistical TestAlternative Hypothesis:
P-value ≤ 0.05Mull Hypothesis:
P-value > 0.05

ANOVA

ANOVA: Practical

- Dataset: cholestrol3.sav
- Sample size: 25/group
- Group: 3 (Grp A, B and C)
- Outcome: cholesterol level in mmol/L

Normality: Histogram

请 Histogram		×
	Variable: cholesterol in mmol/L [cholestr]	<u>T</u> itles
	Panel by Ro <u>w</u> s:	
	intervention group [group]	
	Nest variables (no empty rows)	
	Nest variables (no empty columns)	
Template Use chart specification File	ns from:	
ОК	Paste Reset Cancel Help	

- 1. Graphs > Legacy Dialogs > Histogram
- 2. Variable: *cholestrol*, Display normal curve: [x], Rows: *group*

3. OK

Normality: Boxplot

ia Define Simple Boxplot: Summaries for Groups of Cases	×
Variable: Category Axis: Category Axis: Columns: Columns: Columns: Columns: Columns: Columns: Category Axis: Columns: Category Axis: Columns: Category Axis: Columns: Category Axis: Columns: Category Axis: Columns: Category Axis: Columns: Category Axis: Category Ax	Options
OK Paste Reset Cancel Help	

- 1. Graphs > Legacy Dialogs > Boxplot > Simple > Define
- 2. Variable: *cholestrol*, Category Axis: *group*
- 3. OK

ANOVA: Steps

- 1. Analyze > Compare Means > One-Way ANOVA...
- 2. Dependent List: *cholestrol*, Factor: *group*

ANOVA: Steps

🔹 One-Way ANOVA: Options 🛛 🗙 🗙
Statistics
Descriptive
Eixed and random effects
✓ Homogeneity of variance test
Brown-Forsythe
✓ Welch
Means plot
Missing Values
Exclude cases analysis by analysis
© Exclude cases listwise
Cancel Help

3. [Options...] > Statistics: Descriptive [x] Homogeneity of variance test [x] Welch [x] > Continue

ANOVA: Steps

	<u>S-N-K</u>	Waller-Duncan
<u>B</u> onferroni	<u> </u>	Type I/Type II Error Ratio: 100
🗸 S <u>i</u> dak	🔲 Tu <u>k</u> ey's-b	Dunn <u>e</u> tt
Scheffe	Duncan	Control Category: Last
<u>R</u> -E-G-W F	🔲 <u>H</u> ochberg's GT2	Test
R-E-G-W <u>Q</u>	🔲 <u>G</u> abriel	
Equal Variances N	lot Assumed	
Tamhane's T2	Dunnett's T3	Games-Howell 📃 Dunnett's C

4. [Post Hoc...] > Equal Variances Assumed: Sidak [x], Equal Variances Not Assumed: Games-Howell [x] > Continue

5. OK

ANOVA: Results

Descriptives

cholesterol in mmol/L

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Grp A	25	7.256	.3429	.0686	7.114	7.398	6.5	7.8
Grp B	25	7.944	.3190	.0638	7.812	8.076	7.3	8.7
Grp C	25	8.948	.3057	.0611	8.822	9.074	8.5	9.7
Total	75	8.049	.7685	.0887	7.873	8.226	6.5	9.7

ANOVA: Results

Test of Homogeneity of Variances								
cholesterol in mm	Equal: $p \ge 0.05$							
Levene					Unequal:	p <0.05		
Statistic	df1	df2	Sig.					
.105	2	72	.9	00	df1 = 2			
	df2 = 72							
cholesterol in mm	cholesterol in mmol/L							
	Sum	of						
	Squa	res	df	Mean Square	F	Sig.		
Between Groups 36.202			2	18.101	173.639	.000		
Within Groups 7.506		7.506	72	.104				
Total	4	3.707	74					

Robust Tests of Equality of Means

cholesterol in mmol/L

Statistic ^a		df1	df2	Sig.	
Welch	172.475	2	47.896	.000	

a. Asymptotically F distributed.

Use Welch ANOVA when variance not equal

ANOVA: Results

Multiple Comparisons

Dependent Variable: cholesterol in mmol/L

				Mean Difference (I-			95% Confidence Interval	
		(I) intervention group	(J) intervention group	J)	Std. Error	Sig.	Lower Bound	Upper Bound
	Sidak	Grp A	Grp B	6880	.0913	.000	911	465
			Grp C	-1.6920	.0913	.000	-1.915	-1.469
		Grp B	Grp A	.6880	.0913	.000	.465	.911
Equal variance			Grp C	-1.0040	.0913	.000	-1.227	781
		Grp C	Grp A	1.6920	.0913	.000	1.469	1.915
Games-H			Grp B	1.0040	.0913	.000	.781	1.227
	Games-Howell	ames-Howell Grp A	Grp B	6880	.0937	.000	915	461
			Grp C	-1.6920	.0919	.000	-1.914	-1.470
		Grp B	Grp A	.6880*	.0937	.000	.461	.915
Jnequal	variance		Grp C	-1.0040	.0884	.000	-1.218	790
		Grp C	Grp A	1.6920	.0919	.000	1.470	1.914
			Grp B	1.0040	.0884	.000	.790	1.218

*. The mean difference is significant at the 0.05 level.

Q&A